上海財(cái)經(jīng)大學(xué)李同教授“全球適定性和旅游趨PDE模型的行波解”。調(diào)查的本地和全球的存在性,爆破準(zhǔn)則與經(jīng)典解的長(zhǎng)時(shí)間行為從凱勒 - 謝格爾模型描述趨衍生偏微分方程的系統(tǒng)。此外,我們建立的存在和大振幅的行波解從凱勒 - 謝格爾模型推導(dǎo)出非線性守恒定律的系統(tǒng)的非線性穩(wěn)定性。以下是原文:
Global Wellposedness and Traveling Wave Solutions of PDE Models of Chemotaxis
We investigate local and global existence, blow up criterion and long time behavior of classical solutions for a system of PDEs derived from the Keller-Segel model describing chemotaxis. Moreover, we establish the existence and the nonlinear stability of large-amplitude traveling wave solutions to the system of nonlinear conservation laws derived from Keller-Segel model.